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Differential Migdal-Kadanoff renormalization group for 
disordered systems 

J Machtat and M S Cao 
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, 
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Received 14 August 1991 

Abstract. Phase transitions in quenched random systems are studied within the Migdal- 
Kadanaff approximation. Exact differential recursion relations far the distribution of 
coupling are derived. The q-state Potts model with random ferromagnetic couplings is 
studied in two and three dimensions. In three dimensions there is a non-penurbative 
random fixed paint which exists when the specific heat exponent is either positive or slightly 
negative. If the specific heat exponent is slightly negative a multicritical point separates 
strong and weak disorder regimes. Tie anaiytic results are confirmed b y  numerical simuia- 
tions of the recursion relations. 

1. Introduction 

Phase transitions in systems with quenched random interactions have provided par- 
ticularly stubborn problems in theoretical statistical physics. Real space renormalization 
group studies of these systems have met with mixed success. Though real space methods 
are inherently uncontrolled approximations they often yield important qualitative 
insights and can be directly applied in physical dimensions. Real space studies of 
random systems are rendered difficult by the fact that the renormalization group acts 
in a space of probability distributions of coupling strengths. This difficulty has been 
circumvented in several ways in past studies. Some investigators have replaced the full 
probability distribution by two delta functions [ l ,  21. This approach is useful for 
studying the qualitative features of the phase diagram and the crossover from percolative 
to magnetic phase transitions. When a random fixed point exists, however, the two 
delta function approximation does not adequately describe the fixed point. 

The Migdal-Kadanoff bond moving scheme is the starting point for a number of 
past studies of random spin systems. The Migdal-Kadanoff approach is equivalent to 
replacing the original Euclidean lattice by a hierarchical lattice and then carrying out 
an exact decimation. The ferromagnetic Potts model with quenched disorder on a 
hierarchical lattice is a convenient system in which to study the effects of disorder 
since disorder can be made relevant or irrelevant by varying the number of Potts 
components$. Andelman and Berker [3] examined the distribution of couplings for 
this system 0" I hierarchice! !.!!ice resu!ting from app!y!ng the Migda!-K.adanoffbond 

t Internet address: MACHTA@PHAST.UMASS.EDU. 
$On hierarchical lattices pure Potts models always have continuous transitions in Contrast to Euclidean 
lattices where first-order transitions occur for sufficiently large q and d. 
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moving scheme in two-dimensions. In [31 they use a numerical method to study the 
random fixed point of the renormalization group. Demda and Gardner [4] studied 
the same system analytically. They derived recursion relations for the moments of the 
probability distribution and found fixed points and exponents using a moment 
expansion of the distribution. 

In the present paper we develop a more general analytic method for applying the 
Migdal-Kadanoff renormalization group to random system [SI. The central result is 
an exact differential recursion relation for the Laplace transform of the distribution 
of couplings. Differential as opposed to difference equations are obtained by continuing 
the value of the length rescaling factor, b to one. In the case of pure systems taking 
the limit b + 1 leads to desirable properties; exact duality is preserved in two dimensions, 
difference equations are replaced by more convenient differential equations, dimension- 
ality becomes a continuously adjustable parameter and the values of exponents are 
slightly improved. We expect these features to be inherited by the renormalization 
group for random systems when b + 1. However, there is a possible difficulty with the 
b-t 1 limit. If b is a positive integer, the Migdal-Kadanoff approach is equivalent to 
exact decimation on a realizable hierarchical lattice. This means that the renormaliz- 
ation group is a well-defined transformation from N random variables to N f bd random 
variables and we are guaranteed that the distribution of couplings exist at each stage 
of renormalization. When the limit b -t 1 is taken, the renormalization group no longer 
corresponds to a well-defined transformation on a set of randomvariables. The existence 
and significance of the solutions of the recursion relations are less clear. As we shall 
see however, interesting and plausible solutions emerge in the b + 1 limit. 

The general formalism is developed in section 2 for the disordered ferromagnetic 
Potts model. In section 3 the differential equation for the distribution is used to obtain 
recursion relations for the cumulants of the distribution and fixed points are found in 
rhe subspace of the first Four cumuianis. in two dimensions, a penurbaiive random 
fixed point is found in which the specific heat exponent, a, is the small parameter. 
This fixed point and the associated exponents are the b + 1 continuation of the results 
obtained in [4] for b = 2. 

In three dimensions we find an unexpected result. The perturbative fixed point is 
unphysical for a > 0 and the critical properties are controlled by a non-perturbative 
fixed point. This fixed point survives for small negative values of (Y until it is annihilated 
by merging with the unstable perturbative fixed point. Section 4 contains a Monte 
Carlo study of the q-state Potts model on  a b = 2 hierarchical lattice in two and three 
dimensions. The numerical results are in good agreement with the analytic work. The 
paper closes with a discussion in section 5 .  

J Machta and M S Cao 

2. Differential Migdal-Kadanoff renormalization group for disordered Potts modeis 

The Hamiltonian for the q-state Potts model with random couplings is given by 

- XI k.T = z Ky(&s,s, - 1) (2.1) 
( S )  

where the spins, Sj take integer values S, = 1 , 2 , 3 , .  . . , 4. The sum is over nearest- 
neighbour sites, ( i j ) ,  on a &dimensional lattice. The couplings, Kv are taken to be 
non-negative, independent, identically distributed random variables. The cumulative 
distribution, H for K is defined by 

H ( x )  = Prob(K, <x i .  (2.2) 
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The Migdal-Kadanoff bonding moving scheme is equivalent to replacing the Euclidean 
lattice by a hierarchical lattice. In the present work we take the necklace hierarchical 
lattice which bas the unit cell shown in figure 1. The full lattice is constructed by 
iteratively replacing each bond by a unit cell until a lattice of the desired size is 
obtained. The unit cell consists of b groups of bd-' parallel bonds connected in series. 
The renormalization group transformation consists of adding the bd-' parallel bonds 
in each set and then decimating the resulting b bonds in series. 

Figure 1. The unit cell for the necklace hierarchical lattice 

The transformation from the bd original couplings, K,, . . . , Kbd, to the renormalized 
cecp!ing, Y is ezsi!y ehtained nsing s:axdarc! -e!hcds [2j. E.e key idea is h: h : c  
is a change of variables, K + W = w ( K )  for which the decimation step corresponds 
to adding random variables. Decimating b random bonds, K , ,  . . . , Kb in series yields 
an effective bond of strength w - ' ( w ( K , ) + .  . .+ w ( K b ) )  where, 

w ( x ) = I n [  ex+q-1  ] 
ex - 1 

and w-' is the functional inverse of w. It is easily verified that w-' = w. 
The full recursion relations thus take the form 

The recursion relations (2.4) induce recursion relations for the probability distribu- 
tion for K. A sum of independent random variables corresponds to the convolution 
of the corresponding probability densities. This fact suggests the use of the Laplace 
transform to convert the convolution into a product. Define the Laplace transform of 
a cumulative distribution H as 

h ( z ) = L [ H ] =  eC"dH(x) .  ( 2 . 5 )  1"- 
Similarly, let g(z) be the Laplace transform of the cumulative distribution, G, for W 
Since w(x) is a monotone decreasing function, the relation between G and H is 

G(x) = 1 - H(w(x ) ) .  (2.6) 
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The first step in the renormalization group transformation is a sum of bK's so that 
h is transformed according to 

h ( z ) + h ( z ) b .  (2.7) 
The next step is changing variables to W. To accomplish this, take the inverse Laplace 
transform, compose the result with w and then, to obtain g(z), take the Laplace 
transform. We may formally define an operator P which accomplishes this, 

P[f] = -L[L-l[ f 1 0  w ]  (2.8) 
where 0 is functional composition and L-' is the inverse Laplace transform for 
cumulative distributions such that if 

f = L[Fl (2.9) 

then 

with C an appropriate Bromwich contour. The minus sign in the definition (2.8) 
compensates for the minus sign relating G and H in (2.6). Thus, since w = w-' we have 

g = P[hl and h = P [ g ] .  (2.10) 

Note that P is a linear operator transforming function of z into functions of z. Properties 
of P are given in the appendix. 

With the operator P and the rule for adding random variables we can transcribe 
the recursion relations, (2.4) onto recursion relations for h, 

h'= P[P[hbIbd-']. (2.11) 

To obtain differential recursion relations set b = 1 +dI and keep terms to leading order 
in dl, 

ah= (d  - 1)h In h +P[P[h]  In P[h]] (2.12) 
J l  

where the dependence on z and the length scale I is implicit. Although (2.12) no longer 
corresponds to a realizable hierarchical lattice, we assert that it is the natural continu- 
ation to b+ 1 for random systems. Alternatively, by acting with P we obtain recursion 
relations for g(z), 

~ = g I n g + ( d - I ) P [ P [ g l I n P [ g l ] .  (2.13) 
JI 

Equation (2.13) is equivalent to (2.12) but, for a given finite truncation scheme, (2.13) 
may yield a different result from (2.12) as discussed in section 3.3. 

We begin the study of (2.12) by deriving the differential recursion relations for 
pure systems. Suppose that the probability density for K is a delta function at k so 
that, h(z)=exp(-kz). From (A5) we have g(z)=P[exp(-kz)]=cxp(-w(k)z) so that 
(2.14) becomes 

-- - (d - l ) ( - k z )  e-*' -P[e-'"'k'zw(k)z]. J e-" 
a1 

(2.14) 
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Dividing out exp(-kz) and using (A12)  we obtain the pure system recursion relations, 

(2.15) 

from which an equation for the fixed point, k*, is obtained, 

k* = - w ( k * ) / [ ( d  - l ) w ' ( k * ) ] .  (2.16) 

The correlation length exponent, U, is the inverse of the derivative of R at k*, 

1 w( k*)  w"( k*)  
U w'(k*)' ' 
- = d -  (2.17) 

The pure system results are in agreement with [ 6 ] .  I n  the next section we show how 
to use (2.12) to obtain recursion relations for the cumulants of the distribution. 

3. Recursion relations for cumulants 

3.1. General form of the recursion relations 

Suppose that tine probabiiity iaw for K remains weii-behaved under renormaiizaiion 
so that it is characterized by its cumulants; then h ( z )  may be written as 

n !  ( 3 . 1 )  

where e, is the deviation ofthe mean value of K from the pure fixed point, k*+ c, = ( K ) ,  
and the c, for n >  i are the cumuiants of the distribution of K. For exampie c l =  
( K * ) - ( K ) '  is the variance of K.  To obtain recursion relations for the e,, divide (2.14) 
by h to obtain a differential equation for In h ( r ) ,  

a In h 1 
-= ( d  - 1 )  In h +; P [ P [ h ]  In P [ h ] ] .  

a1 (3.2) 

The coetficient of z' in a Tayior series expansion o i  the right-hand side oi  ( 3 2 j  
determines the recursion relation for the nth cumulant. The first step in obtaining this 
coefficient is expanding h ( z )  in the form, 

h ( z )  =e-*"(l + a , z + a 2 z 2 + .  . . ) (3 .3)  

where the coefficients, ai are polynomials in the cumulants. The next step is applying 
the operator P to h ( z ) .  Define the quantity p(n ,  x )  as 

p ( n , x ) - P [ z "  e-'"'"'] (3 .4)  

P [ h ] = p ( O ,  w*)+a,p(l ,  w * ) + a 2 p ( 2 ,  w * ) + .  . . (3.5) 

then 

* ~ . , I  *\  .~~ _ L .  .__._ >:.. -I..-:.. .L^ E ̂ ,I^... :-- __^.._ _..I" c..- ",.. ..\ w '  = w ( K ' ) .  In mc appcnoix wc u~rairi LILC rvrrvurrrg LGCUIJLVF ~ U K  I V L  ytn ,  a,, 

p ( 0 ,  x )  =e-'' 

i a  
w' (x)  ax p ( n + l , x ) =  -- - p ( n , x ) .  (3.6) 
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Thus an explicit expression for g = P[ h] may be obtained iteratively. The remaining 
steps are straightforward and tedious: P[h]InP[h] is expanded in a series in 
zn  exp(-rw'), equations (3.6) are applied again with x+ k*, the result is divided by 
h(r)  to obtain, ( l /h)P[P[h]  In P[h]] which is expanded as a Taylor series in z and 
plugged into (3.2). Finally, the coefficient of r" is extracted and multiplied by (-l)"n! 
to obtain the recursion relation for c.. We carried out these formal manipulations 
using Maihemaiica. 

i n  order to truncate the hierarchy of cumuiant recursion reiations in a systematic 
way each cumulant is multiplied by some power of a small parameter, A and terms to 
a given order in A are retained at each step in the calculation. At the end of the 
calculation, A is set to one. We make the substitutions c,+Ac,, c2+ he2,  c3+ A2c,, c4+ 
A'c, and let all the higher cumulants vanish. Terms of order A' are kept. For general 
q and d the coefficients are too complicated to display; however, the structure of the 
IL-CUIS*"*I ICL*llUHS ,U U l U C l  n E>, 

J Machra and M S Cao 

..,..: ._.. ~ ._>.. 1 3  I. 

dc, 1 
_ = _  c,+all other terms of order A, A 2  and A' 
d l  U 

de, a 
_ = _  c2+all terms of order A 2  and A' except c:, c: 
d l  U 

II ,\ 
\ > . , I  

de3 1 
_=_  (3-2dv)c3+all other terms of order A2 and A' except c:, c: 
d l  U 

where v is given in (2.!7), n = 2 - d u  is the specific heat exponent for the pure system 
and A and B are constants. The ordering scheme is self-consistent insofar as no terms 
appear in the equation for a given cumulant having a lower order than the given 
cumulant. For example, therecursion relation for c, contains c: but not c:. Furthermore, 
to linear order, the equation for c. depends only on cumulants c, with m 3 n. Thus 
the recursion relations linearized at the pure fixed point (c, = c2 = . . . = 0) form a 
triangular matrix and the crossover exponents, &, can be read off of the leading terms 
in the recursion relation, 4" = n - ( n  - 1) dv, n = 1 , 2 , 3 , .  . . . 

Note that the crossover exponent, b2, associated with the second cumulant is the 
specific heat exponent and that the pure fixed point is stable against small perturbations 
when a < O  in agreement with the Harris criterion. This is not surprising since the 
Harris criterion is satisfied for all positive integer values of b [3, 71. 

3.2. Periurbatioefixed point for small a 

Since the sign of a determines the stability of the pure fixed point it is tempting to 
suppose that for small positive a there will be a random fixed point whose cumulants 
become small as powers of a. An examination of the recursion relations for c I ,  . . . , c4, 
equations (3.6), show that there is such a solution with c, - c2- a, c,- a2 and c4- a3.  
Supposing that the higher cumulants are higher order in a we can study this perturbative 
random fixed point to order a'. To this order, all of the terms not explicitly displayed 
in (3.6) can be evaluated at the value of q = q, (d)  for which a vanishes; qJ2) = 6.3 14 48 
and q,(3)= 17.1413. To order a*, c.,=O, and the equation for c, can be solved in terms 
of c2. This solution is plugged into the equation for c2 which is then solved for c2 in 
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terms of c , .  This solution is plugged into the equation for ct and this equation is solved 
for cI to linear order in a. The results for d = 2  and d = 3  are shown in table 1. For 
comparison, the analogous perturhative fixed point found by Derrida and Gardner [41 
for d = 2  and b = 2 is also shown in table 1. Linearizing the recursion relations around 
the perturbative fixed point yields a matrix of coefficients whose eigenvalues determine 
the critical exponents. Having kept terms of order a2 we are able to calculate the 
eigenvalues of the renormalization group to order a. The two leading eigenvalues 
determine U, the correlation length exponent, and 4, the leading crossover exponent. 
These are given in table 1 along with the results obtained in [4]. 

For U > 0, the two-dimensional perturbative random fixed point corresponds to a 
well-defined probability distribution, the correlation length exponent satisfies the bound 
[8] u > 2 / d  and the crossover exponent is minus the pure specific heat exponent so 
that the fixed point is stable. Not surprisingly, the b +  1 results are quite close to the 
b = 2 results of [4]. We refer the reader t o  [4] for a more detailed discussion of the 
perturbative fixed point. 

3.3. Non-perturbatioefixed point for d = 3  

In three dimensions the perturbative fixed point is unphysical for U > 0 since the fixed 
‘distribution’ has a negative variance. Thus we are lead to search for a non-perturbative 
random fixed point. In principle such a fixed point need not have small or even finite 
moments; however, as it turns out, the cumulants are reasonably small for d = 3 and 
can be accurately deduced from a few terms of the cumulant recursion relations. We 
searched numerically for fixed points of the recursion relations (3.7) for d = 3  and 
several values of q near q,(3). 

For q = 17.2343 > q.(3) the pure specific heat exponent is small and positive (U = 
0.002). There are two physical solutions to the recursion relations, the pure fixed point 
and a non-perturbative fixed point. The cumulants and exponents of the non-perturba- 
tive fixed point are given in table 2. Note that this fixed point is stable and that the 

Table 1. 7 h e  perturbative fixed point in two and three dimensions. The middle row is the 
result obtained from [4] for the case b = 2. 

CI Ci C3 Y d 

d = 2  0.29120 1 . 4 6 4 ~  2.557az 1+0.11590 --U 

d = 2 , b = 2  [4] 0.4966a 2 . l l la  3.918a‘ 1+0.13060 -a 
d = 3  1.3800 - 5 . 1 9 1 ~  93.63a’ f-1.57a -3012 

Table 2. The cumulants and exponents far the random Axed points for d = 3  and several 
values of e. The row labelled W i s  obtained from the cumulants of W rather than K. The 
row labelled MC is obtained from the Monte Carlo calculation of section 4. 

~~ 

n =0.002 -0.0172 0.0700 0.0169 0.0067 0.686 -0.01 
n = o  -0.0148 0.0595 0.0122 0.0041 0.6833 -0.014 
a = o  w - - - - 0.6815 -0.066 

a = -0.002 -0.0110 0.0436 0.0066 0.0016 0.679 -0.004 
0.685+0.005 - 01 =0, b = 2  MC -0.007 0.03 - - 
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correlation length exponent satisfies the bound, u>2/d. Since the first two cumulants 
are reasonably small and the third and fourth cumulants are very small one can be 
hopeful that the low order truncation of the recursion relations gives a good estimate 
of properties of this fixed point though in the absence of a consistent ordering scheme 
this cannot be guaranteed. 

As a test of the accuracy of calculation we carried out the same analysis using the 
cumulants of W rather than K ,  starting from (2.13). The results are shown in table 2 
in the row labelled ' W ' .  The difference between the results oi the two truncation 
schemes gives an estimate of the uncertainty in the value of the exponents. 

The non-perturbative fixed point is the only stable fixed point for positive values 
of a and thus controls the critical behaviour of the system for any strength of disorder. 
When a is slightly negative, there are three physical fixed points; the pure fixed point, 
the perturbative fixed point and the non-perturbative fixed point. The perturbative 
fixed point has two unstable directions and represents a multicritical point separating 
a line of pure transitions governed by the pure fixed point from a line of random 
transitions governed by the non-perturbative fixed point. 

As a is decreased further, the perturbative and non-perturbative fixed points move 
together and annihilate one another when a = ac= -0.003. Mathematically the per- 
turbative and non-perturbative fixed points continue to exist for a < ac as unphysical 
romp!ex conjqpte pairs in !he space of c~mu!an!s. D.e renorma!izz!inn group flows 
in the c,-c2 plane are sketched io figure 2 for the several ranges of a values. 

J Machta and M S Cao 

3.4. Low temperature phase 

There is a connection between the low temperature phase of the Potts model on a 
hierarchical lattice and the directed self-avoiding walk on the corresponding dual 
lattice. To see this, note that when K is large, w ( K )  + q exp(-K) so that the recursion 
relation, (2.4), becomes 

... ha-- 7 - .=-..- Y > Fn.l-ti-- I 7  P I  i e  +hn rar..rr;nn .A.4nn fnrthn ,srt;t;nn fnnrt;nn 
" " C l r L ' I  -U+,\ 1- ,,I. Ly"PL1V.l  \..."I .a L . . C L I I Y . I . " I .  IC.YL.".I ."L ""~'VL~.'.V...'..-'.V.. 

of a directed walk on a diamond lattice with random bond energies given by the 
random couplings of the Potts models [9]. The dimensionality, d', of the diamond 
lattice which is dual to the necklace lattice of dimension d is given by d ' =  d / (d  - 1). 

If the variance of K is sufficiently large, then the sum in (3.8) can be replaced by 
its largest term yielding strong disorder recursion relations, 

(3.9) 

These are the 'zero temperature' recursion relations for the directed walk [lo]. In [9] 
it is shown that for d ' s 2 ,  the flow associated with (3.8) is always towards strong 
disorder if the initial variance in K is non-vanishing. Thus, ford  3 2, (3.9) is the proper 

The scaling properties of the strong disorder phase defined by (3.9) were studied in 
[lo]. The exponent, o, characterizes the scaling of the variance of K ,  var(K)- L2" 
where L is the length scale. For b = 2 and d = 2 the result [lo] is w =0.3 which is close 
to the exact value o f f  for directed walks on Euclidean lattices. 

. . ~ r . n r o ; n n  *-I-+;A~ tr. i n ~ r a r + ; ~ ~ t ~  thn lnw tpmnerstiirp nhn.- n f t h ~  n d n m  Pnttc model ,L.U"III"I. I*.mL."., ," ...,*"L.6YL' &..* .-.. .b...y ........- p...."" -. ..._ .-..- ~ -..- - 
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(C) 

Figure 2. The renormalhatian group flows for d = 3  in the e , -e ,  subspace for (a) a>O 
( b )  a.< (I < O  and ( c )  n < n-. 

It is interesting that the low temperature phase of the random Potts model for d 2 
is aiways a disordered phase even though the criticai phase may be pure or disordered 
depending on a and the strength of the disorder. The renormalized coupling, K is 
related to an intensive quantity, the spin stiffness, a, via Cl = K / L d - l .  Thus fluctuations 
in fl decrease as Since pure systems and the systems with infinitesimal disorder 
flow to different low temperature fixed points, the free energy is non-analytic in the 
disorder at zero disorder. 

4. Numerical results 

The multicritical scenario presented in section 3.3 for d = 3 is quite surprising and one 
wonders whether it is either an artefact of truncating the recursion relations for the 
cumulants at finite-order or taking the b +  1 limit. In this section we investigate the 
d = 3, b = 2 recursion relations numericaiiy and confirm the quaiitative conciusinns of 
the previous section. 

We calculated the fixed distributions and the leading eigenvalues for the Migdal- 
Kadanoff renormalization group for b = 2 and d = 3. In contrast to the histogram 
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approach of [3] we used a Monte Carlo approach [ I l l  in which the distribution is 
represented by N double precision numbers where N is taken as 30 000. We used the 
recursion relations for K (2.4) setting b = 2 to transform an ensemble of N values of 
K into a new ensemble of N values of k. 

We used a version of Newton’s method to locate the fixed distribution. If the mean 
value of the distribution changes under renormalization then a constant times the 
change is subtracted from each member of the ensemble, i.e. the distribution is shifted 
in the direction opposite to the change. If the constant is judiciously chosen (1.4 works 
well) then the process converges to a fixed distribution and the shifts at each stage 
become quite small (lo-’ to lo-’). 

The qualitative features which we find are in agreement with the analytic results. 
If a > 0 then the fixed distribution has a finite variance and as a approaches zero, this 
variance does not approach zero. For a slightly less than zero the fixed point depends 
on the initial variance of K ;  a delta distribution results if the initial disorder is weak 
and a broad distribution results if the initial disorder is strong. Finally, for a less than 
roughly -0.003 only the pure fixed point exists. The fixed distribution for a = O  
( q  = 20.896) is shown in figure 3. The fixed point for the pure system is at k* = 0.3827 
and the first two cumulants of this distribution are given in table 2. 

J Machta and M S Cao 

K 

Figure 3. T h e  fixed distribution for d = 3, b = 2 and a = 0 

In order to compute the thermal eigenvalue, we first find the fixed distribution by 
the above procedure. Then a second copy of the ensemble of random couplings is 
made and shifted by a small amount, So = The two copies of the distribution are 
then simultaneously transformed according to the above procedure and the difference, 
S,, between the mean values of the two distributions is recorded at each successive 
iteration, n. The exponent Y is given by 

It is important to note that the small shifts needed to stabilize the original distribution 
near the fixed point are applied to both copies of the distribution. This procedure 
reduces errors due to the finite size of the Monte Carlo sample. After one or two 
iterations, the value of w reaches a plateau which is practically independent of n until 
the copy of the distribution drifts out of the linear regime after roughly 10 iterations. 
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The correlation length exponent is shown for a = O  in table 2. The cumulants and 
exponent obtained by the numerical method are in reasonable agreement with the 
analytic methods. 

The assumption underlying the method for finding the fixed point and its thermal 
eigenvalue is that the unstable direction in the space of distributions is mainly associated 
with shifting the distribution. This assumption is supported in part by analytically 
determining the eigenfunction of the thermal eigenvalue. In all cases studied here, this 
eigeiifiinc:ion is domiiia:id by i, so :ha: the tiiistzhk diiec:ioii is piidominan!!j. a 
shift in the distribution. 

5. Discussion 

We have introduced a new method for studying phase transitions in disordered systems. 
This approach is based upon the Migdal-Kadanoff approximate real space renormaliz- 
ation group. For disordered systems this renormalization group acts on the space of 
probability distributions for the coupling strengths. We derive an exact flow equation 
for the Laplace transform of the distribution of coupling strengths. Upon taking the 
limit b+ 1 a differential equation is obtained which serves as a convenient starting 
point for further calculations. In the present paper we have illustrated the utility of 
this approach by studying the disordered ferromagnetic Potts models. The same 
approach should prove to be useful for other phase transitions defined on hierarchical 
lattices. For example, it is not difficult to obtain analogous differential recursion 
relations for the directed walk problem [9] or the Potts model on fractally diluted 
lattices [ 111. 

The most striking result of our  investigation of the disordered Potts model is the 
discovery of a non-perturbative fixed point in three dimensions. When the specific heat 
exponent is positive this fixed point controls the properties of the disordered system. 
As a approach zero, the correlation length exponents remain greater than the pure 
system value of 3. When a is slightly negative, there are three fixed points. The pure 
fixed point is stable and controls the critical behaviour for weak disorder. The non- 
perturbative fixed point is also stable and controls the critical behaviour for strong 
diserde:. The !hi:d 6 x 4  pein! is per!a:b&ive!y  ne^: :he pure fixed poix: with as a 
small parameter. The perturbative fixed point controls a multicritical point separating 
a line of pure and random second-order transitions. 

A second observation which bears further study is that the pure low temperature 
phase is always unstable to infinitesimal disorder ford 2. The random low temperature 
phase has properties which can be obtained by studying the directed self-avoiding 
walk on the dual lattice. 

It would be very interesting to know whether the above scenario with a multicritical 
point separating pure behaviour from random behaviour holds for spin systems on 
Euclidean lattices. For d = 4 - 6  dimensions, field theoretic RG studies [12-141 of 
n-vector models yield a stable perturbative random fixed point for a > 0 and only the 
pure fixed point for a < O .  The situation for the king model is complicated [12, 151 
by the fact that the random fixed point is O ( E ” ~ )  removed from the pure fixed point 
rather than O ( E )  perhaps indicating the onset of a non-perturbative fixed point as E 

is increased. However, apart from the curious E”*  behaviour of the Ising model, there 
is no evidence for the scenario found here. On the other hand, recent Monte Carlo 
simulations of the random lsing [16] and XY [ I71  models in d = 3 ,  both of which 
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have small values of a, have yielded exponents which seem to depend on the strength 
of the disorder and which differ from the E expansion predictions. It is difficult to 
interpret these results since the pure system crossover exponents for both of these 
systems are small and finite-size effects may be important well beyond the length scales 
available to the simulations. 

J Machta and M S Cao 
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Appendix. Properties of the operator P 

The linear operator P is defined by the sequence of operations: (1) inverse Laplace 
transform, (2) change of variables from x to w(x) (3) Laplace transform and (4) 
multiplication by -1 or, formally, 

Pf=-L[L-'[f]. w]. ( A I )  

The Laplace transform and inverse Laplace transform, defined in (2.5) and (2.9), act 
upon and yield measures respectively. Since w(x) is its own inverse function, P is its 
own inverse. Consider the action of P on an exponential, eCk. The inverse transform 
yields a step function with discontinuity at k, 

L-'[eC"] = O(x - k ) .  (A2) -~ 
I ne change of variabies yieid 

L-'[eCx]o w=e(w(x)-k).  

Finally, taking the Laplace transform yields 

P[eCk]= -!o"e-zx dO(w(x)-k). 

Since w = w-' and w is a decreasing function we have S(w(x) - k) = 1 - S(x- w(k)) and 

(A51 P[~-z*]  = e-ru!kl 

Next consider P acting on functions of the form Z" eC""'*'. Multiplication of a Laplace 
transform by z is equivalent to differentiation, thus 

i-!jz" e-zyJ!k!j= o:":ix- w(kj j  jA6) 

where the superscript n denotes the nth derivative. Define p ( n ,  k )  as 

p ( n ,  k ) - P [ z "  I. (A7) 

From (A5) and the fact that w = w-' we have 
,In L\=--'*. I,,", e., ~ - (.48! 

Generally, we have 

p ( n ,  k)=-L[O'"'(w(x)-w(k))]= - eCx dO'"'(w(x)-w(k)). (A9) 
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Differentiation with respect to k yields 

yielding the recursion relation, 

i a  
w ' (k )  ak P ( n +  1, k ) =  -- --p(n, k ) .  

For example, 
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